


For the case of two classes we can write the likelihood of the data as

𝑒𝑚𝑝 𝑟𝑖𝑠𝑘 = Π
𝑖 
𝑝

𝑦
𝑖(1 − 𝑝)

(1−𝑦
𝑖
)
 

where p is the probability of class 1 and (1-p) is the probability of class 0 and i loops over my
data points (xi,yi). Suppose p0 is the probability of class 0 and p1 is the probability of class 1.
Then we can write the likelihood of the data
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Let c0 be the number of instances of xi with label 0 and c1 be the number of instances of xi
with label 1. Then I can write the empirical risk as
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Suppose we have a network with three nodes in the output layer (for three-way
classification).



If we have three classes then the empirical risk becomes
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where p0 + p1 + p2 = 1 and c0 + c1 + c2 = n the total size of my training data.

We will convert the likelihood into the empirical risk by taking the negative log
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Each pj is the probability of the class j given the data and is given by the softmax function.

Suppose the outputs in the final layers are , , and𝑧
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which are also probabilities. Each zi is between 0 and 1.𝑧
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This means I can write the empirical risk as
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To get the gradient I need the first derivatives with respect to each variable.

Let us keep the original form of the risk that loops over all datapoints.
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