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Multiple Classes

Let us now generalize to K > 2 classes. We take one of the classes, for
example, Ck, as the reference class and assume that
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To treat all classes uniformly, we can write
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which is called the softmax function (Bridle 1990). If the weighted sum
for one class is sufficiently larger than for the others, after it is boosted
through exponentiation and normalization, its corresponding y; will be
close to 1 and the others will be close to 0. Thus it works like taking a
maximum, except that it is differentiable; hence the name softmax. Soft-
max also guarantees that >; y; = 1.

Let us see how we can learn the parameters. In this case of K > 2
classes, each sample point is a multinomial trial with one draw; that is,
rt|xt ~ Multg (1, y!), where yf = P(C;|x"). The sample likelihood is
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and the error function is again cross-entropy:
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We again use gradient descent. If y; = exp(a;)/ ZJ- exp(a;), we have
dyi
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where §;; is the Kronecker delta, which is 1 if i = j and 0 if i # j (exer-
cise 3). Given that >; r{ = 1, we have the following update equations, for
ji=1,...,K
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For the case of two classes we can write the likelihood of the data as

. (1-y)
emprisk = l'[l,pyl(l -p) £

where p is the probability of class 1 and (1-p) is the probability of class 0 and i loops over my
data points (xi,yi). Suppose p,is the probability of class 0 and p, is the probability of class 1.
Then we can write the likelihood of the data

emprisk = Hiplyipo(l_yi)

Let cO be the number of instances of xi with label 0 and c1 be the number of instances of xi
with label 1. Then | can write the empirical risk as

likelihood =p “p °

Suppose we have a network with three nodes in the output layer (for three-way
classification).



If we have three classes then the empirical risk becomes

c

likelihood = pzczp ' D “
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where p0 + p1 + p2 =1 and c0 + ¢c1 + c2 = n the total size of my training data.

We will convert the likelihood into the empirical risk by taking the negative log

c

emp risk = — log(zo;zzo1 'p, ) = - clogp,) —clogp) —clogp,)
Each pj is the probability of the class j given the data and is given by the softmax function.

Suppose the outputs in the final layers are z, = 1/(1 + e ! x), z, =1/(1 + e x), and

z,=1/(1 + e x) which are also probabilities. Each zi is between 0 and 1.

This means | can write the empirical risk as
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emprisk = f(w w,w) = —clog(1/(1+e ")) —clog(l/(1+e ') =clog(l/(1+e ')
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To get the gradient | need the first derivatives with respect to each variable.

Let us keep the original form of the risk that loops over all datapoints.

. _ y, (A-y)
emprisk = l'[j Hipj P,



